CHAPTER 1: PURPOSE AND NEED

1.1 INTRODUCTION

The Federal Transit Administration (FTA), in cooperation with the Metropolitan Transportation Authority (MTA), MTA Capital Construction (MTACC) and MTA New York City Transit (NYCT), proposes to construct and operate the Fulton Street Transit Center (FSTC) to improve access to and from Lower Manhattan—the area south of Chambers Street in Manhattan. Figure 1-1 presents the location of the Proposed Action.

The FSTC is one of three (3) currently identified priority transit projects meant to address the urgent need for comprehensive transit improvements in Lower Manhattan in response to the events of September 11, 2001. The two (2) other priority projects are the World Trade Center (WTC) Transportation Hub (also referred to as the Permanent WTC Port Authority Trans-Hudson (PATH) Terminal), termed in this Final Environmental Impact Statement (FEIS) the Permanent WTC PATH Terminal, sponsored by the Port Authority of New York and New Jersey (PANYNJ) and the South Ferry Subway Terminal Project, sponsored by the MTA and NYCT. These priority projects were formally identified by New York Governor George Pataki as the “Lower Manhattan Transportation Recovery Projects” through a coordinated process conducted in late 2002 and early 2003 by the Transportation Working Group, a group of local decision-makers including the State of New York, the City of New York, MTA, PANYNJ and the Lower Manhattan Development Corporation (LMDC).

On February 27, 2003, U.S. Transportation Secretary Norman Y. Mineta announced the selection of these projects as a group of nationally recognized transportation projects designated to receive high-level attention under President Bush’s September 18, 2002 Executive Order 13274, Environmental Stewardship and Transportation Infrastructure Project Review. In a press release, Secretary Mineta named the Lower Manhattan Recovery Effort as one of six (6) transportation projects that would receive “accelerated environmental reviews by a Federal task force under President Bush’s executive order on environmental stewardship”. In designating the Lower Manhattan Recovery Projects for accelerated environmental review, Secretary Mineta acknowledged that “[a]s a result of September 11, transit service was severely impacted, disrupting the daily commute of thousands of people who lived, worked and visited one of the largest employment and financial centers of the world”. Secretary Mineta’s press release added: “By placing the Lower Manhattan Recovery Projects on the priority list, it not only speeds up the economic recovery, but it also ensures that the City will reap the benefits of a more environmentally friendly transportation system”. This designation is intended to help expedite the rebuilding of the transit system damaged in the terrorist attacks as the projects advance through the National Environmental Policy Act (NEPA) review process.

This chapter provides a description and discussion of the:

- Proposed Action;
- Existing system operational problems and deficiencies;
- Project Purpose and Need; and,
- Project goals.

1.2 IDENTIFICATION OF THE PROPOSED ACTION

The Proposed Action consists of the construction and operation of a rehabilitated, reconfigured and enhanced multi-level, street-level, and subsurface station complex in Lower Manhattan that would serve 12 NYCT subway lines. The FSTC would be located on Broadway between Fulton and John Streets with a subsurface passageway extending on Dey Street west to Church Street. It would include improvements to four (4) connected subway stations:
Figure 1-1

New York City Transit

Fulton Street Transit Center

Project Location

Legend

- Subway Line
- Station Location
- Project Location

Source: Metropolitan Transportation Authority
• 45 Fulton Street;
• AC Broadway-Nassau;
• 23 Fulton Street; and,
• JMZ Fulton Street.

These four (4) stations comprise the existing Fulton Street – Broadway Nassau Subway Station Complex (Existing Complex) (see Figure 1-2). The Proposed Action involves six (6) principal elements (see Figure 1-3):

1. A prominent new Entry Facility at street-level with a subsurface level passenger concourse (the Central Station Concourse); centrally located on Broadway between Fulton and John Streets, that integrates horizontal connectivity between the AC and 45 service with vertical connectivity between the street and different levels, and provides improved street-level access and visibility;
2. Rehabilitation of the 45 line Fulton Street Station and the 23 line Fulton Street Station;
3. A subsurface pedestrian passageway beneath Dey Street between Broadway and Church Street connecting the Entry Facility to the WTC site, the Dey Street Passageway;
4. Improvements to the mezzanines and platform access at the AC line Fulton Street Station and JMZ line Fulton Street Station, improving circulation and reducing overcrowding conditions;
5. A pedestrian and passenger connection between the RW and E service; and,
6. Improved street access to the subway, including wider and more direct stairways, access for disabled customers and new street entrances.

The FSTC would provide direct access to the future concourse at the WTC site, from which access to a variety of transit options similar to those existing prior to September 11 is anticipated to be available, including:

• The reconstructed 19 line Cortlandt Street Station;
• The reconstructed Permanent WTC PATH Terminal to the west; and,
• The ferry terminal at the World Financial Center (WFC) further to the west.

Integral to the design, construction and operation of the FSTC are sustainability practices embodied by NYCT’s Design for the Environment (DfE) and Construction for the Environment (CfE) guidelines. These have been successfully applied at other NYCT capital improvement projects and continue to evolve. These guidelines are being used to guide the design, construction and operation of the FSTC and are listed in Appendix A.

Agencies involved with the revitalization of Lower Manhattan recognize that the improvement of access to Lower Manhattan in support of economic recovery and resumed growth may cause short-term construction impacts while the long-term benefits of improved public transportation on Lower Manhattan’s environment and economy are being realized. In order to minimize the burden on the environment when improving access to Lower Manhattan, NYCT, FTA, LMDC, PANYNJ and the New York State Department of Transportation (NYSDOT) jointly developed Environmental Performance Commitments (EPCs) to be incorporated into the design, construction and operation of federally funded Lower Manhattan Transportation Recovery Projects. The EPCs consist of measures that would be proactively implemented to avoid or minimize potential adverse impacts. The EPCs are particularly focused on the avoidance of construction impacts on access and circulation, air quality, noise and vibration, cultural resources and socioeconomics. They are detailed in Appendix A.

Where applicable, the technical analysis chapters of this FEIS provide a discussion of how the project would implement protective measures to proactively minimize adverse effects on the environment in the form of EPCs.
1) Entry Facility
2) Station Rehabilitation
3) Dey Street Passageway
4) Mezzanine & Platform Improvements
5) RW to E Connector
6) Improved Street Access
6) New Southern Entrances from Street Level to 4 5 Platforms
1.3 PROBLEM IDENTIFICATION

1.3.1 EFFECTS OF SEPTEMBER 11, 2001

Overall transportation functionality in Lower Manhattan, both locally and regionally, was severely impaired by the events of September 11; this impairment was further exacerbated by deficiencies in the existing transit facilities, including the Existing Complex. Lower Manhattan contains extensive transportation assets, most dating back to the pre-World War I era. The events of September 11 seriously affected this already outmoded system, as described in Sections 1.3.2 and 1.3.3 below. The PATH service was disrupted; subway service was disrupted; and the Cortlandt Street Station was destroyed.

To successfully support revitalization of Lower Manhattan, improvements to transit facilities are not only needed to restore transportation functionality, but to accommodate the range of changes that September 11 has triggered in the broader context of Lower Manhattan’s recovery. This includes the redevelopment of the WTC site, shifts in land uses from commercial to residential, and anticipated increases in visitor activity. Concerning the latter, the Statue of Liberty already receives 3.5 million visitors per year departing from Lower Manhattan while the original observation deck for the WTC site received approximately two (2) million visitors per year. The WTC memorial has the potential to receive five (5) million visitors per year or more. Transit is one of many modes that visitors to Lower Manhattan can use. Improvements to Lower Manhattan’s existing transportation facilities will not only improve visitor experiences, but will also substantially raise the quality of daily life for the area’s residents and workers. These advances are important in retaining and developing Lower Manhattan’s commercial base.

1.3.2 HISTORY OF SUBWAY SERVICE AND ECONOMIC DEVELOPMENT IN LOWER MANHATTAN

OVERVIEW

The NYCT subway system is the largest in North America, serving 4.6 million trips daily, and is the main public transit service to Lower Manhattan. The largest and most heavily used subway lines that provide access to Lower Manhattan converge at or near the Existing Complex (see Figures 1-1 and 1-3), which is the ninth busiest complex citywide, serving over 225,000 movements (passenger trips entering, exiting or transferring) each day. It is also among the oldest set of subway stations in the City.

Three (3) other subway line stations are located within approximately 2,600 feet (1/2 mile) of the Existing Complex:

- The line Cortlandt Street Station below Church Street at Dey Street;
- The line terminal station at the WTC site below Church Street and north of Fulton Street; and,
- The line Cortlandt Street Station at the WTC site (currently closed).

Collectively, the Existing Complex and nearby stations provide service to 100 million trips annually and facilitate access between Lower Manhattan and the regional commuter hubs at:

- Pennsylvania Station (midtown Manhattan - west);
- Grand Central Station (midtown Manhattan - east);
- The Port Authority Bus Terminal (midtown Manhattan - west); and,
- Atlantic Avenue Terminal (Brooklyn).

The Existing Complex is also an important east-west connector within close proximity to other transit modes and centers of economic activity, including: the WTC site, with its associated PATH service; and the WFC, with its associated trans-Hudson ferry service. Fulton Street itself represents a major east-west pedestrian axis in Lower Manhattan, running from South Street Seaport on the east to Church Street on
the west. This places further emphasis on the important location of the Existing Complex and nearby subway lines and transit services as the main public transit access point to Lower Manhattan.

HISTORIC STREET NETWORK AND SUBWAY SERVICE

At the beginning of the 20th Century, Lower Manhattan became the center of economic activity in the New York metropolitan area and the total commercial floor area in Lower Manhattan began, and has continued, to increase dramatically. However, unlike other parts of New York City where increases in pedestrian and vehicular activity associated with economic growth could be accommodated by a network of relatively wide streets and avenues, Lower Manhattan’s street network generally consists of narrow winding streets dating from the early 1600s, with only a few wider streets such as Broadway and Church Street. Lower Manhattan’s increasing inability to accommodate higher levels of pedestrian activity within its streets has resulted in increased incompatibility and conflict between pedestrian and vehicular activities.

In the early 20th Century, Lower Manhattan developed to ever-greater densities and levels of economic activity, and separate subway operators designed systems and stations to service the area. With the economic growth of Lower Manhattan, existing subway station facilities, including street entrances, stairways, pedestrian corridors, fare control areas and platforms, had to accommodate increasingly large peak volumes of pedestrian traffic that exceeded the design capacity of the various subway facilities. The result has been congestion at numerous locations in the subway system in Lower Manhattan leading to delays and inefficiencies in overall pedestrian circulation and subway operation.

While Lower Manhattan further continued its economic growth, the separate subway systems were unified under City ownership. The subsequent interconnection of the various subway stations relieved some of the overcrowding by spreading pedestrian traffic throughout the system and sharing street entrances among subway lines. However, because the interconnections were not part of the original system design, this resulted in an inefficient maze of subsurface pedestrian corridors that were inadequately sized to accommodate the ever-increasing passenger flows. The street entrances that were originally serving a single subway line were now available to users of other lines via subsurface connections. However, because the street entrances to the subway system were not designed to accommodate the increased flow, additional overcrowding of the entrances resulted.

Given that street access to the subway pedestrian system was inefficient and pedestrian corridors were crowded, the subsurface pedestrian passageways could not substantially relieve the increasingly congested pedestrian street network. As a result, conflicts between pedestrian and vehicular traffic movements continued to increase, especially during rush hour periods. The circuitous and undersized pedestrian connections associated with the subway system have often resulted in commuters using the congested street-level network to get to their destinations, rather than using the subsurface pedestrian connections.

ECONOMIC GROWTH IN LOWER MANHATTAN AFTER 1970

This situation was exacerbated in the 1970s when several land use changes shifted travel patterns in Lower Manhattan. The construction of the WTC further increased the economic activity in Lower Manhattan, particularly to western Lower Manhattan, away from the existing subway stations and street entrances located east of Broadway. The shift of economic activity westward was further reinforced by the subsequent development of the WFC and Battery Park City (BPC). The integration of PATH service into the WTC brought additional commuters to Lower Manhattan, many of whom worked in areas to the east of Church Street. As a result, east-west pedestrian traffic between the area west of Church Street and the area east of Broadway increased dramatically. This surge, especially in the morning and evening rush hours, further added to levels of pedestrian and vehicular congestion in Lower Manhattan because the narrow streets and sidewalks could not adequately accommodate the increases in pedestrian flow. Currently, streets such as Fulton and Liberty Streets have become increasingly congested and have produced pedestrian traffic conflicts with vehicular traffic on Broadway and Church Street, further
reinforcing the image of Lower Manhattan as an area that is difficult to access and navigate within. The subway system in the area, which has remained essentially unchanged over the past fifty years, does not offer a viable subsurface alternative to pedestrian activity in the east-west direction on the streets above.

1.3.3 SYSTEM DEFICIENCIES

Major destinations in Lower Manhattan are characterized by: poor connectivity among different transportation modes (e.g. subways, PATH and ferry); poor connectivity among subway lines; and poor connectivity between subway lines and the street-level network and centers of activity, especially those located to the west. Moreover, transit stations in Lower Manhattan lack the strong street-level and subsurface visual presence necessary for easy and efficient pedestrian navigation. The following describes the inefficiencies of Lower Manhattan transit systems in more detail; these are also characterized in Figure 1-4.

STATION WAYFINDING

Because of the historical construction of individual subway lines as independent systems, the original location and design of subway entrances were based on street conditions at that time, rather than on criteria of unified access and visual orientation at street-level. Subway entrances often were constructed as small stairways incorporated into existing buildings, with limited visibility from the street and in competition with the visual clutter of street furniture and commercial signs. The Existing Complex is hampered by the lack of clear orientation and visual cues that are necessary for efficient access to the stations from the street and, once in the Existing Complex, to the platforms. Many entrances to the Existing Complex are obscured, dark, narrow and difficult to find. In addition, many of the subway entrances open directly to narrow, crowded sidewalks and streets, which reduces visibility of the entrance and creates additional congestion. In order to access the subway platforms from the street, repeated up-and-down movements through platforms and corridors are often necessary before one finally reaches the destination platform. Once inside the Existing Complex, transfers are very complicated and crowded and adversely affect the performance of subway service throughout the Existing Complex.

Without clearly defined access points to and within the Existing Complex, subway riders unnecessarily travel the convoluted system of subsurface tunnels and passageways, spending additional time in the station and reducing system capacity. At the street-level, the lack of clearly identifiable entranceways to the station complex creates confusion and circuitous pedestrian movement.

PHYSICAL CONDITIONS AND FUNCTIONAL LAYOUT OF THE SUBWAY STATIONS

As a result of station age, coupled with a lack of system integration, existing subway structures are substandard and inefficient in accommodating the current ridership. Furthermore, the stations lack the operational flexibility necessary to maximize the efficiency of a modern transit system.

As subsurface subway pedestrian connections were constructed at a later date than the subway system itself, neither the layouts nor the physical dimensions of the interconnections could be optimized to accommodate the prevailing pedestrian flow patterns and volumes. Today, the Existing Complex is characterized by crowded corridors, mezzanines and train platforms. Level of Service (LOS)\(^1\) is poor, ranging from LOS D at the stair to the north side of Fulton Street from the \(\text{AC}\) mezzanine, to LOS F at the ramp from the \(\text{AC}\) mezzanine to the northbound \(\text{AS}\) platform.

\(^1\) LOS is a qualitative assessment of the quality of pedestrian circulation through passageways and on platforms and the “Volume to Capacity” ratio on stairways and escalators. LOS is expressed in the range from A (excellent) to F (very poor) and provides an indicator of pedestrian congestion. At LOS A or B, passengers enjoy free movement unaffected by the presence of other pedestrians. However, at LOS E or F, passenger densities are high and movement is extremely restricted.
Fulton Street Transit Center

Figure 1-4

Existing Complex Deficiencies

- Congested Street Crossing
- Poor Street Identification
- Poor Street Access
- Poor Internal Wayfinding
- Difficult Circulation
- Platform End Crowding
 - Train Dwell Delays
- Difficult Wayfinding
- Poor Connectivity
- Missing Connectivity

New York City Transit
Fulton Street Transit Center
Existing Complex Deficiencies
Figure 1-4
In recognition of these deficiencies, several subway stations in the area were rehabilitated in the 1990s, including the 2W Cortlandt Street, the JMZ Fulton Street and the AC Broadway Nassau Street stations, all of which are in a state of good repair. These rehabilitations were limited to elements within the individual stations and did not address the fundamental issues to be resolved by the Proposed Action. In contrast, the 23 Fulton Street and the 45 Fulton Street subway stations have never been substantially renovated since their opening. They require major improvements in surfaces, lighting and street and platform access. Improvements or rationalization in fare control and organization of paid and unpaid areas are also needed to more efficiently operate these stations as an integrated complex.

Currently, the 45 and JMZ platforms have a number of direct street entrances and exits while the AC and 23 platforms have intermediate mezzanines. The AC mezzanine is bisected by the JMZ line, thereby resulting in passengers using the platform itself as a pedestrian route when transferring between the 23 line and the southbound JMZ line at the east end, and between the northbound JMZ line and the 45 line at the west end. The 23 line also has a number of vertical elements between the platform and the mezzanine which is bisected below the junction of William and Fulton Streets.

SUBWAY ACCESS, CONNECTIVITY AND OPERATIONAL ISSUES

Many trips by public transit to Lower Manhattan involve the use of multiple subway lines or other modes such as buses, ferries and commuter railroads. Therefore, it is important that the characteristics of the total trip from home to work (i.e., both within the transit service and in terms of access to and from the transit service) are as favorable as possible to maintain and foster Lower Manhattan’s attractiveness as a place to live and work. Within the Existing Complex, congested subway stations, confusing station entrances and difficult access to nearby trip destinations become recognized as barriers to access that increase the burden of visiting or working in Lower Manhattan. The lack of a direct connection from the 45 line to the RW and from the RW to the E also limits transportation options in the area.

The Existing Complex is also not compliant with the Americans with Disabilities Act (ADA) in terms of access to and from the street and between platforms for patrons with physical disabilities. Further details on specific ADA access deficiencies of the Existing Complex are provided below. In addition to the lack of adequate street access, lack of connectivity among stations and physical deficiencies, the subways in Lower Manhattan also exhibit a broad range of operational problems, which can be traced back to their genesis as individual and independently operated systems. The access, connectivity and operational issues of the various subway lines are described below.

45 LINE ISSUES

Platforms

With the exception of the north end of the northbound 45 platform, the 45 side platforms are generally of a good width and are not expected to be affected by overcrowding in the future. The north end of the northbound 45 platform, however, experiences crowding upon the loading and unloading of trains and this is expected to continue into the future. Transferring at the Existing Complex provides the principal means for Brooklyn and Queens patrons of the AC line to access Midtown locations east of Fifth Avenue via the 45 line. During the weekday AM peak commute period, passengers disembark from the northbound A or C trains at the Broadway-Nassau Street Station and tend to congregate at the northern end of the northbound 45 platform, thereby utilizing only the northern portion of the platform and train for embarkment. NYCT station workers currently direct passengers southward along the northbound 45 platform to alleviate their concentration at the northern end of the platform and encourage passengers to utilize the entire train length for embarkment. Platform accessibility from the street is also constrained by street access “portals” located at Fulton Street at the north end and John and Dey Streets at the center of the platform. No convenient access is afforded to the southern half of the platform.

1.0 Purpose and Need

Stairways and Ramps

The stairs at the north end of the 45 southbound platform connecting to the mezzanine level below form a bottleneck for pedestrians. The resulting congestion is expected to continue in the future at the stairs connecting the 45 southbound platform to the 45 northbound platform and the AC line. Flow problems are exacerbated by congested transfer flows in opposing directions. A “pinch point” is created at the north end of the 45 northbound platform by conflicting flows between entering and exiting passengers at the turnstiles and the transfer flows traveling in the opposing direction. Pedestrians using the ramp connecting the AC line to the 45 northbound platform experience congestion, which is expected to continue in 2025. Congestion also occurs and is projected to continue in 2025 on the stairs connecting the 45 line northbound platform level to the street. This station does not presently provide ADA accessibility.

While in close proximity, there is currently no direct connection from the 45 line to the RW line, and none from the RW to the E line. This fact limits connectivity between lines and lessens transportation options and commuter convenience.

AC LINE ISSUES

Platforms

Minor congestion currently occurs for the AC island platform during certain peak hours, which is projected to continue into the future. This congestion is related to delayed services and localized bunching in portions of the platform and occurs incidentally when large numbers of passengers wait for specific train lines to arrive in the station. Passenger flow on this platform is further disrupted since all passengers transferring from the east side of the Existing Complex (23 or JMZ northbound) to the west side (45 or JMZ southbound) must leave the mezzanine level and walk along the AC platform level to cross under the JMZ tracks.

Mezzanines

The AC mezzanines are located east and west of the JMZ line and are comprised of a series of ramps and stairs connecting to the AC platform and other subway lines. The east and west mezzanines are projected to experience congestion into the future at some critical conflict points. These include portions of the mezzanine in the vicinity of the west-end stairways connecting to the 45 platforms. Some of the stair and ramp locations connecting the mezzanine and platform levels are also predicted to experience congestion in 2025. This station does not presently provide ADA accessibility.

23 LINE ISSUES

Platforms

The 23 island platform is very narrow and provides little room to maneuver around the platform stairs. Passenger densities are projected to exceed the NYCT planning criterion for operations in the future. Congestion is expected to occur on the southbound platform side during the morning rush hour and on the northbound platform side during the afternoon rush hour.

Mezzanines

The northern end of the mezzanine level is separated from the southern mezzanine platform by Fulton Street. Further, the corridors and sightlines at the northern end of the mezzanine are hampered by bends in the walls and reduced ceiling heights that also cause pedestrian congestion at station entrances and stairs. These constrictions are typically caused by the accommodation of utility vaults (e.g. water, sewer piping) in the street adjacent to the station. This station does not presently provide ADA accessibility.
LINE ISSUES

Platforms

The JMZ side platforms are generally of a good width and it is not predicted that they will be affected by overcrowding in the future. However, this station does not presently provide ADA accessibility.

1.3.4 RECENT PLANNING EFFORTS

The effects of September 11 highlighted the urgent need for the rebuilding and development of comprehensive transportation improvements in Lower Manhattan with a focus on restoring the pre-existing transit service and improving transportation connectivity within Lower Manhattan and the metropolitan region. Despite its outmoded transportation facilities, Lower Manhattan has, by far, the highest percentage of transit ridership in the nation. For the almost 220,000 Lower Manhattan workers who live in the City, the subway is the overwhelmingly preferred transit option. By borough of residence, the approximate percentage of people who journey to work in Lower Manhattan and who commute by subway is as follows:

- Lower Manhattan: 57 percent;
- Brooklyn: 77 percent;
- Queens: 70 percent; and,
- Bronx: 70 percent.

Due to this extensive subway usage, improvements to Lower Manhattan’s transit facilities and service are considered intrinsic to the revitalization of Lower Manhattan.

From a regional perspective, population growth across the region and in Manhattan is expected to continue and the economic viability of Lower Manhattan will, therefore, become increasingly reliant on good transportation systems to support these important labor increases. The potential for enhanced connections with the WTC site and the WFC via the passageway under Dey Street supports the concept of the FSTC as an important Lower Manhattan public facility.

Improvement of regional connectivity is needed to make Lower Manhattan more accessible to the region’s growing labor pools. Transportation investments that provide faster and more convenient transportation to Lower Manhattan for commuters from Long Island, New Jersey and the northern suburbs of New York and Connecticut would make Lower Manhattan a more desirable place in which to work and locate major companies. In addition to the benefits of improved access to Lower Manhattan for the regional labor pool, the opportunity for commercial tenants of new office buildings to locate in close proximity to new and improved transit facilities would support the economic development in the area. Similarly, close proximity to new and improved transit facilities would support the residential conversion or revitalization of underutilized buildings in the area. By attracting a larger pool of residents and workers to the area, this would contribute to the enhancement of neighborhood life and provide a greater foundation upon which to rebuild the Lower Manhattan economy.

Following the events of September 11, a strengthened commitment was made among NYCT, the PANYNJ (which serves both as owner of the WTC site and as operator of the PATH transit system), and the LMDC to ensure that all Lower Manhattan transit improvements would be mutually supportive, intermodal, interconnected, coordinated and properly integrated into redevelopment plans. The Existing Complex and the Permanent WTC PATH Terminal are planned to be reconstructed and enhanced in a mutually compatible way to maximize the combined benefits of these mass transit facilities. Through the construction and operation of the proposed FSTC, access to and among the subway lines would be improved and a direct pedestrian link would be created between the FSTC and the PATH, WTC and WFC. Via the proposed new subsurface pedestrian passageway below Dey Street, the FSTC would also provide a subsurface weather protected route for commuters traveling between the PATH terminal and destinations east of Broadway. This passageway would facilitate pedestrian flow at street-level and
below street-level and reduce street-level conflicts between pedestrians and vehicular traffic. The location of the FSTC Entry Facility on Broadway between Fulton and John Streets would also support the existing and future growth of economic activity in the immediate vicinity by serving as a hub for commuter, resident and visitor travel.

NYCT has advanced its plans for improved connectivity by proposing a Central Station Concourse space within the FSTC. This space would represent a “hinge” between a proposed subsurface pedestrian passageway beneath Dey Street extending between the WTC site to the west and the AC and 45 stations to the east. This new centrally-located station concourse would organize the pedestrian traffic entering and exiting the transit system as well as the pedestrian traffic resulting from transfers among subway lines. The Central Station Concourse would also have a street-level presence to provide the necessary entrances to the organizing space below and a strong visual identity at street-level to facilitate wayfinding. The street-level component of the Central Station Concourse would be the Entry Facility located on the east side of Broadway between Fulton and John Streets. The FSTC would integrate connections within a single structure and would complement and further improve both existing and proposed subsurface connections; it would also allow a more efficient channeling of subway patrons to their destinations. The street-level component of the Entry Facility would serve as a highly visible focal point of subway transit in Lower Manhattan. With the street-level Entry Facility on Broadway at its core, the proposed FSTC would extend from the east end of the Existing Complex to the west, through the proposed subsurface pedestrian passageway below Dey Street.

The above-described planning and design efforts undertaken by MTA form the basis for this FEIS and the current plans being developed. In advancing the design concepts, the location of the Entry Facility at the intersection of Broadway, Fulton and John Streets is considered an integral component of its functionality and provides a prominent location that enhances transit access, visibility and wayfinding. Its connectivity with the WTC site and WFC, via the passageway under Dey Street, supports the concept of the FSTC as an important Lower Manhattan public facility.

At the street-level, the role of Fulton Street as a key east-west pedestrian axis is also expected to become even more important with the planned extension of Fulton Street toward West Street, as part of the WTC Redevelopment Plan. The Entry Facility would be conveniently located to provide easy access to and from the subway system for pedestrians on the extended Fulton Street.

The Proposed Action represents a much-needed enhancement of the transit facilities in key downtown locations and also forms an essential node within the larger context of the regeneration of Lower Manhattan. As such, the Proposed Action would continue to be developed in close consultation with the other planning entities in Lower Manhattan.

1.4 PROJECT PURPOSE AND NEED

The events of September 11 destroyed critical portions of the Lower Manhattan transportation system, compounding existing deficiencies and jeopardizing the area’s sustainability as a Central Business District, emerging residential area and key tourist destination. Rebuilding the Lower Manhattan transportation network — restoring service, eliminating deficiencies and anticipating future needs — is a critical basis for its successful revitalization. The concentration of subway lines at the centrally located Existing Complex makes it integral to this revitalization process. In order for the Existing Complex to realize its potential for contributing to the revitalization of Lower Manhattan and the region, its existing and anticipated operational deficiencies need to be addressed, and its connectivity with other transit services and the street network needs to be improved.

The purpose of the FSTC is to create a functionally and visually unified transit facility with a central distinguishing portal by substantially improving the Existing Complex and extending it with a subsurface connection to the WTC site on the west. The development of the FSTC in this location has substantial potential for integrating transit and urban development for Lower Manhattan. It would also reduce congestion at the existing subway platforms, improve the overall experience of transit users, improve
safety and provide improved pedestrian connectivity within the Existing Complex and with other subway and transit services to the west. In doing so, the Proposed Action would address the need for improved access to Lower Manhattan in support of economic recovery and resumed growth.

Despite the number of subway lines serving Lower Manhattan and the availability of other nearby transit options (such as PATH service, ferries and buses), access to and from Lower Manhattan remains poor. The Lower Manhattan transit network lacks integration and cohesion and the existing subway network has limited subsurface pedestrian connections. Connectivity is further hampered by congested station platforms, mezzanines and corridors and inadequate visual surface presence to orient passengers. Transit connections are circuitous and inconvenient, as is access to major destinations such as the WTC site and WFC, leading to an increase in travel time to and from Lower Manhattan.

Because of the pivotal role that the Existing Complex currently plays in providing transit access to Lower Manhattan, its existing deficiencies need to be addressed in order to improve overall access to Lower Manhattan and to support its economic recovery and future growth. The Existing Complex is critical to the restoration and revitalization of the local and regional economy for the following reasons:

- The Existing Complex houses the largest concentration of subway services in Lower Manhattan;
- The Existing Complex is located in close proximity to other transit services (such as the PATH service) and to existing and future centers of activity, including the redeveloped WTC site and Memorial; and,
- The Existing Complex is located centrally within the Lower Manhattan street network.

In order for the Existing Complex to maximize its contribution to the economic recovery of Lower Manhattan and the region, and to meet the increased transportation demand anticipated with the regeneration and growth in Lower Manhattan, substantial improvements are needed, including:

- Improved connectivity of the Existing Complex with the WTC site and Memorial, WFC and PATH service;
- Measures to improve existing operational problems of the Existing Complex (including resolution of congestion); and,
- Measures to improve street-level wayfinding and access to the subway system.

The proposed FSTC would address the deficiencies at the Existing Complex and would:

- Create a facility that is less congested and circuitous;
- Comply with ADA requirements;
- Be easily identifiable at street-level;
- Provide direct pedestrian access and streamlined transfers with other subway services; and,
- Improve rapid transit service to over 225,000 daily passengers upon its service opening in 2007.

The proposed FSTC would be able to adequately accommodate present customer demands and anticipated year 2025 levels of demand for movement to, from, and within the FSTC.

1.5 PROJECT GOALS

The problems and needs of the Existing Complex within Lower Manhattan led to the formulation of the project’s goals which have been subject to public review. This was accomplished through the Scoping Process, public outreach and a Technical Advisory Committee (TAC) for the FSTC (see Chapter 5: Public Outreach for further details). A public hearing on the Draft Environmental Impact Statement (DEIS) was held on June 8th, 2004. Public comments on the DEIS received during the public comment period have been taken into account in the preparation of this FEIS, and responses to public comments are included in the Response to DEIS Comments document, included in Chapter 25. Intrinsic to the Purpose and Need for
the Proposed Action, the following project goals demonstrate support for improved transit access to Lower Manhattan and its economic revitalization:

- Facilitate access, improve wayfinding and streamline transfers;
- Allow for intermodal connectivity (PATH, ferry service);
- Promote system flexibility in the event of service disruption;
- Improve east-west pedestrian connectivity across Lower Manhattan;
- Promote safety and reduce congestion at heavily trafficked street crossings;
- Support current land use, recovery and rebuilding of Lower Manhattan through improved transit infrastructure, aiding the revitalization of downtown and providing the opportunity for positive local and regional benefits; and,
- Improve travelers’ experience and transit’s overall attractiveness.
This Page Intentionally Left Blank